Spatial Distribution of Calcium-Gated Chloride Channels in Olfactory Cilia
نویسندگان
چکیده
BACKGROUND In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. PRINCIPAL FINDINGS To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. CONCLUSIONS On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.
منابع مشابه
Clustering of cyclic-nucleotide-gated channels in olfactory cilia.
Olfactory cilia contain the known components of olfactory signal transduction, including a high density of cyclic-nucleotide-gated (CNG) channels. CNG channels play an important role in mediating odor detection. The channels are activated by cAMP, which is formed by a G-protein-coupled transduction cascade. Frog olfactory cilia are 25-200 microm in length, so the spatial distribution of CNG cha...
متن کاملCalmodulin Contributes to Gating Control in Olfactory Calcium-activated Chloride Channels
In sensory neurons of the peripheral nervous system, receptor potentials can be amplified by depolarizing Cl currents. In mammalian olfactory sensory neurons (OSNs), this anion-based signal amplification results from the sequential activation of two distinct types of transduction channels: cAMP-gated Ca channels and Ca-activated Cl channels. The Cl current increases the initial receptor current...
متن کاملChloride accumulation in mammalian olfactory sensory neurons.
The generation of an excitatory receptor current in mammalian olfactory sensory neurons (OSNs) involves the sequential activation of two distinct types of ion channels: cAMP-gated Ca(2+)-permeable cation channels and Ca(2+)-gated Cl(-) channels, which conduct a depolarizing Cl(-) efflux. This unusual transduction mechanism requires an outward-directed driving force for Cl(-), established by act...
متن کاملCalcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics.
Transient elevations of intracellular Ca2+ play an important role in regulating the sensitivity of olfactory transduction, but such elevations have not been demonstrated in the olfactory cilia, which are the site of primary odor transduction. To begin to understand Ca2+ signaling in olfactory cilia, we used high-resolution imaging techniques to study the Ca2+ transients that occur in salamander...
متن کاملModel of Ca oscillations due to negative feedback in olfactory cilia
We present a mathematical model for Ca oscillations in the cilia of olfactory sensory neurons. The underlying mechanism is based on direct negative regulation of cyclic nucleotide-gated channels by calcium/calmodulin and does not require any autocatalysis such as calcium-induced calcium release. The model is in quantitative agreement with available experimental data, both with respect to oscill...
متن کامل